Stick or Spill? Scaling Relationships for the Binding Energies of Adsorbates on Single-Atom Alloy Catalysts

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2022)

引用 10|浏览2
暂无评分
摘要
Single-atom alloy catalysts combine catalytically active metal atoms, present as dopants, with the selectivity of coinage metal hosts. Determining whether adsorbates stick at the dopant or spill over onto the host is key to understanding catalytic mechanisms on these materials. Despite a growing body of work, simple descriptors for the prediction of spillover energies (SOEs), i.e., the relative stability of an adsorbate on the dopant versus the host site, are not yet available. Using Density Functional Theory (DFT) calculations on a large set of adsorbates, we identify the dopant charge and the SOE of carbon as suitable descriptors. Combining them into a linear surrogate model, we can reproduce DFT-computed SOEs within 0.06 eV mean absolute error. More importantly, our work provides an intuitive theoretical framework, based on the concepts of electrostatic interactions and covalency, that explains SOE trends and can guide the rational design of future single-atom alloy catalysts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要