DynaLAP: Human Activity Recognition in Fixed Protocols via Semi-Supervised Variational Recurrent Neural Networks With Dynamic Priors

IEEE Sensors Journal(2022)

引用 1|浏览7
暂无评分
摘要
Learning the route and order of tasks can be critical to human activity recognition (HAR) for fixed protocols of movement. In this article, we propose a novel framework, DynaLAP, a semi-supervised variational recurrent neural network (VRNN) with a dynamic prior distribution, to perform activity recognition in fixed protocols. DynaLAP takes single tri-axial accelerometry data as input and causally classifies the activity of 10–30-s windows at a time. DynaLAP learns not only a window-specific short-term state, but also a long-term dynamic state iteratively updated throughout the protocol’s measurements. Additionally, instead of using a stationary prior distribution of activity classes, DynaLAP learns a dynamic prior that updates for each window. DynaLAP thereby learns protocol-specific dynamics when trained on data from subjects abiding by a fixed protocol. Two datasets from previously published literature were used to evaluate DynaLAP: the fully labeled MotionSense dataset of 24 subjects and a weakly labeled dataset of 17 subjects collected at the Georgia Institute of Technology. For each dataset, we varied the number of training labels used from a single subject’s data to the entire dataset. DynaLAP outperformed previous supervised and semi-supervised HAR approaches by 6–42 percentage points, with F1 scores that remained above 80%. These results suggest that DynaLAP can achieve state-of-the-art HAR performance in fixed protocols by learning protocol-specific dynamics, especially in weakly and scarcely labeled settings. DynaLAP could ultimately reduce the necessity for labor-intensive annotation efforts in HAR applications involving routine activities (e.g., military training).
更多
查看译文
关键词
Activity recognition,deep learning,semi-supervised learning,variational recurrent neural networks (VRNNs)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要