Geotechnical characterization and stability analysis of subaqueous slopes in Lake Lucerne (Switzerland)

Natural Hazards(2022)

引用 2|浏览3
暂无评分
摘要
Tsunamis occur not only in marine settings but also in lacustrine environments. Most of the lacustrine tsunamis are caused by seismically- or aseismically-triggered mass movements. Therefore, an assessment of the stability of subaqueous slopes is crucial for tsunami hazard assessment in a lake. We selected Lake Lucerne (Switzerland) as a natural laboratory to perform an in-depth geotechnical characterization of its subaqueous slopes. This lake experienced documented tsunamis in 1601 and 1687. Some of its slopes still bear sediment volumes with a potential for tsunamigenic failure. To identify such slopes, we interpreted available reflection seismic data and analyzed the bathymetric map. Then, we performed 152 dynamic Cone Penetration Tests with pore pressure measurement (CPTu) and retrieved 49 sediment cores at different locations in the lake. These data were used to characterize the failure-prone sediments and to evaluate the present-day static stability of subaqueous slopes. Obtained results allowed the definition of three classes of slopes in terms of static stability: unstable slopes, stable slopes close to the unstable state, and stable areas. Non-deltaic slopes with thicker unconsolidated fine-grained sediment drape and moderate-to-high slope gradients (> 5–10°) have the lowest Factor of Safety. In agreement with previous studies, the failure plane for the non-deltaic slopes is embedded within the fine-grained glaciolacustrine sediments. Deltaic slopes with prevailing coarse-grained sediments mostly appear statically stable. Finally, we generalized the measured undrained shear strength profiles s_u(z) into the depth-dependent power-law models. These models define the s_u of Lake Lucerne’s sediments and can be applied to other lakes with similar sedimentation history.
更多
查看译文
关键词
Lake Lucerne, Slope stability, Subaqueous landslides, Cone penetration testing, Sediment coring, Undrained shear strength
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要