GBP3 promotes glioblastoma resistance to temozolomide by enhancing DNA damage repair

ONCOGENE(2022)

引用 11|浏览19
暂无评分
摘要
Glioblastoma is the most common malignant brain cancer with dismal survival and prognosis. Temozolomide (TMZ) is a first-line chemotherapeutic agent for glioblastoma, but the emergence of drug resistance limits its anti-tumor activity. We previously discovered that the interferon inducible guanylate binding protein 3 (GBP3) is highly elevated and promotes tumorigenicity of glioblastoma. Here, we show that TMZ treatment significantly upregulates the expression of GBP3 and stimulator of interferon genes (STING), both of which increase TMZ-induced DNA damage repair and reduce cell apoptosis of glioblastoma cells. Mechanistically, relying on its N-terminal GTPase domain, GBP3 physically interacts with STING to stabilize STING protein levels, which in turn induces expression of p62 (Sequestosome 1), nuclear factor erythroid 2 like 2 (NFE2L2, NRF2), and O6-methlyguanine-DNA-methyltransferase (MGMT), leading to the resistance to TMZ treatment. Reducing GBP3 levels by RNA interference in glioblastoma cells markedly increases the sensitivity to TMZ treatment in vitro and in murine glioblastoma models. Clinically, GBP3 expression is high and positively correlated with STING, NRF2, p62, and MGMT expression in human glioblastoma tumors, and is associated with poor outcomes. These findings provide novel insight into TMZ resistance and suggest that GBP3 may represent a novel potential target for the treatment of glioblastoma.
更多
查看译文
关键词
Chemotherapy,CNS cancer,Medicine/Public Health,general,Internal Medicine,Cell Biology,Human Genetics,Oncology,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要