Optimized design of an arterial network model reproduces characteristic central and peripheral haemodynamic waveform features of young adults

JOURNAL OF PHYSIOLOGY-LONDON(2022)

引用 8|浏览9
暂无评分
摘要
The arterial network in healthy young adults is thought to be structured to optimize wave reflection in the arterial system, producing an ascending aortic pressure waveform with three key features: early systolic peak, negative systolic augmentation and diastolic hump. One-dimensional computer models have provided significant insights into arterial haemodynamics, but no previous models of the young adult have exhibited these three features. Given that this issue was likely to be related to unrepresentative or non-optimized impedance properties of the model arterial networks, we developed a new 'YoungAdult' model that incorporated the following features: (i) a new and more accurate empirical equation for approximating wave speeds, based on area and relative distance to elastic-muscular arterial transition points; (ii) optimally matched arterial junctions; and (iii) an improved arterial network geometry that eliminated 'within-segment' taper (which causes wave reflection in conduit arteries) whilst establishing 'impedance-preserving' taper. These properties of the model led to wave reflection occurring predominantly at distal vascular beds, rather than in conduit arteries. The model predicted all three typical characteristics of an ascending aortic pressure waveform observed in young adults. When compared with non-invasively acquired pressure and velocity measurements (obtained via tonometry and Doppler ultrasound in seven young adults), the model was also shown to reproduce the typical waveform morphology observed in the radial, brachial, carotid, temporal, femoral and tibial arteries. The YoungAdult model provides support for the concept that the arterial tree impedance in healthy young adults is exquisitely optimized, and it provides an important baseline model for investigating cardiovascular changes in ageing and disease states.
更多
查看译文
关键词
arterial haemodynamics, cardiovascular modelling, wave reflection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要