A reactive oxygen species-replenishing coordination polymer nanomedicine disrupts redox homeostasis and induces concurrent apoptosis-ferroptosis for combinational cancer therapy

Acta Biomaterialia(2022)

引用 21|浏览7
暂无评分
摘要
Reactive oxygen species (ROS) are important signal molecules and imbalanced ROS level could lead to cell death. Elevated ROS levels in tumor tissues offer an opportunity to design ROS-responsive drug delivery systems (DDSs) or ROS-based cancer therapies such as chemodynamic therapy. However, their anticancer efficacies are hampered by the ROS-consuming nature of these DDSs as well as the high concentration of reductive agents like glutathione (GSH). Here we developed a doxorubicin (DOX)-incorporated iron coordination polymer nanoparticle (PCFD) for efficient chemo-chemodynamic cancer therapy by using a cinnamaldehyde (CA)-based ROS-replenishing organic ligand (TCA). TCA can ROS-responsively release CA to supplement intracellular ROS and deplete GSH by a thiol-Michael addition reaction, which together with DOX-triggered ROS upregulation and Fe3+-enabled GSH depletion facilitated efficient DOX release and enhanced Fenton reaction, thereby inducing redox dyshomeostasis and cancer cell death in a concurrent apoptosis-ferroptosis way. Both in vitro and in vivo studies revealed that ROS-replenishing PCFD exhibited much better anticancer effect than ROS-consuming control nanoparticle PAFD. The ingenious ROS-replenishing strategy could be expanded to construct versatile ROS-responsive DDSs and ROS-based nanomedicines with potentiated anticancer activity.
更多
查看译文
关键词
Reactive oxygen species,Coordination polymer nanoparticle,Ferroptosis,Redox dyshomeostasis,Chemodynamic therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要