Spatiotemporal Temperature Distribution of NIR Irradiated Polypyrrole Nanoparticles and Effects of pH

POLYMERS(2022)

引用 0|浏览13
暂无评分
摘要
The spatiotemporal temperature distributions of NIR irradiated polypyrrole nanoparticles (PPN) were evaluated by varying PPN concentrations and the pH of suspensions. The PPN were synthesized by oxidative chemical polymerization, resulting in a hydrodynamic diameter of 98 +/- 2 nm, which is maintained in the pH range of 4.2-10; while the zeta potential is significantly affected, decreasing from 20 +/- 2 mV to -5 +/- 1 mV at the same pH range. The temperature profiles of PPN suspensions were obtained using a NIR laser beam (1.5 W centered at 808 nm). These results were analyzed with a three-dimensional predictive unsteady-state heat transfer model that considers heat conduction, photothermal heating from laser irradiation, and heat generation due to the water absorption. The temperature profiles of PPN under laser irradiation are concentration-dependent, while the pH increase only induces a slight reduction in the temperature profiles. The model predicts a value of photothermal transduction efficiency (eta) of 0.68 for the PPN. Furthermore, a linear dependency was found for the overall heat transfer coefficient (U) and eta with the suspension temperature and pH, respectively. Finally, the model developed in this work could help identify the exposure time and concentration doses for different tissues and cells (pH-dependent) in photothermal applications.
更多
查看译文
关键词
polypyrrole nanoparticles,NIR laser irradiation,photothermal modeling,photothermal transduction efficiency,overall heat transfer coefficient
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要