MXene-Derived 3D Defect-Rich TiO 2 @Reduced Graphene Oxide Aerogel with Ultrafast Carrier Separation for Photo-Assisted Uranium Extraction: A Combined Batch, X-ray Absorption Spectroscopy, and Density Functional Theory Calculations.

Inorganic chemistry(2022)

引用 35|浏览11
暂无评分
摘要
Encapsulation of nano-semiconductor materials in three-dimensional (3D) adsorbents to build a typical semiconductor-adsorbent heterostructure is a forward-looking strategy for photo-assisted uranium extraction. Here, we develop 3D MXene-derived TiO(M)@reduced graphene oxide (RGO) aerogel for photo-assisted uranium extraction. Theoretical simulations demonstrate that oxygen vacancies on TiO(M) tailor the energy level structure and enhance the electron accumulation at gap states of TiO(M), thereby further realizing the spatial separation efficiency of electron-hole pairs by the Schottky junction. By virtue of the in situ X-ray photoelectron spectroscopy spectrum, we identify that photogenerated electrons generated over TiO(M) were transferred to graphene oxide aerogel by the Schottky junction. Accordingly, TiO (M)@RGO aerogel presents a considerable removal efficiency for U(VI) with a removal ratio of 95.7%. Relying on the X-ray absorption spectroscopy technique, we distinguish the evolution of 2HO-2O-U-5O into HO-2O-U-3O from dark to light conditions, further confirming the reduction of high-valent uranium. This strategy may open a paradigm for developing novel heterojunctions as photocatalysts for selective U(VI) extraction.
更多
查看译文
关键词
graphene oxide aerogel,ultrafast carrier separation,mxene-derived,defect-rich,photo-assisted,x-ray
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要