Optically Detected Magnetic Resonance Spectroscopy of Cu-Doped CdSe/CdS and CuInS2 Colloidal Quantum Dots

ACS Nano(2022)

Cited 7|Views22
No score
Abstract
Copper-doped II-VI and copper-based I-III-VI2 colloidal quantum dots (CQDs) have been at the forefront of interest in nanocrystals over the past decade, attributable to their optically activated copper states. However, the related recombi-nation mechanisms are still unclear. The current work elaborates on recombination processes in such materials by following the spin properties of copper-doped CdSe/CdS (Cu@CdSe/CdS) and of CuInS2 and CuInS2/(CdS, ZnS) core/shell CQDs using continuous-wave and time-resolved optically detected magnetic resonance (ODMR) spectroscopy. The Cu@CdSe/CdS ODMR showed two distinct resonances with different g factors and spin relaxation times. The best fit by a spin Hamiltonian simulation suggests that emission comes from recombination of a delocalized electron at the conduction band edge with a hole trapped in a Cu2+ site with a weak exchange coupling between the two spins. The ODMR spectra of CuInS2 CQDs (with and without shells) differ significantly from those of the copper-doped II-VI CQDs. They are comprised of a primary resonance accompanied by another resonance at half-field, with a strong correlation between the two, indicating the involvement of a triplet exciton and hence stronger electron-hole exchange coupling than in the doped core/shell CQDs. The spin Hamiltonian simulation shows that the hole is again associated with a photogenerated Cu2+ site. The electron resides near this Cu2+ site, and its ODMR spectrum shows contributions from superhyperfine coupling to neighboring indium atoms. These observations are consistent with the occurrence of a self-trapped exciton associated with the copper site. The results presented here support models under debate for over a decade and help define the magneto-optical properties of these important materials.
More
Translated text
Key words
Continuous-Wave Optically Detected Magnetic Resonance, Colloidal Quantum Dots, Semiconductors, Photoluminescence, Copper-Doped, Core, Shell
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined