d-Cysteine supplementation partially protects against ferroptosis induced by xCT dysfunction via increasing the availability of glutathione.

JOURNAL OF CLINICAL BIOCHEMISTRY AND NUTRITION(2022)

引用 3|浏览2
暂无评分
摘要
Glutathione (GSH) is synthesized from three amino acids and the overall process is highly dependent on the availability of l-cysteine (l-Cys). GSH serves as an essential cofactor for glutathione peroxidase 4 (Gpx4), which reduces phospholipid hydroperoxides. The inactivation of Gpx4 or an insufficient supply of l-Cys results in the accumulation of lipid hydroperoxides, eventually leading to iron-dependent cell death, ferroptosis. In this study, we investigated the anti-ferroptotic properties of d-cysteine (d-Cys) under conditions of dysfunction in cystine transporter, xCT. l-Cys supplementation completely rescued ferroptosis that had been induced by the erastin-mediated inhibition of xCT in Hepa 1-6 cells. Upon d-Cys supplementation, the erastin-treated cells remained completely viable for periods of up to 24 h but eventually died after 48 h. d-Cys supplementation suppressed the production of lipid peroxides, thereby ferroptosis. The addition of d-Cys sustained intracellular Cys and GSH levels to a certain extent. When Hepa 1-6 cells were treated with a combination of buthionine sulfoximine and erastin, the anti-ferroptotic effect of d-Cys was diminished. These collective results indicate that, although d-Cys is not the direct source of GSH, d-Cys supplementation protects cells from ferroptosis in a manner that is dependent on GSH synthesis via stimulating the uptake of l-Cys.
更多
查看译文
关键词
ferroptosis, glutathione, cystine, L-cysteine, D-cysteine
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要