Synthesis of dimethyl‐ and diphenylsilane‐based oligo(azine)s: Thermal, optical, electronic, and morphological properties

Journal of Applied Polymer Science(2022)

引用 0|浏览16
暂无评分
摘要
Four new oligo(azine)s were synthesized from dimethyldiphenylsilane and tetraphenylsilane core-based dialdehydes and hydrazine by high-temperature polycondesation and proposed as materials for optoelectronic applications. The oligo(azine)s were characterized by EA, FT-IR, and NMR. Although most of samples were poorly soluble, TPS-containing PAZ-4 was soluble in aprotic polar solvents. According to SEC and FT-IR studies, the samples were oligomers with up to five repeating units long. TGA showed highly stable samples with TDT10% over 420 degrees C except for PAZ-1 that contains a DMS core along with phenyl units, and thus, the lowest carbon content in the series. From DSC analysis, the substitution of phenyl groups in PAZ-1/3 by biphenyl moieties in PAZ-2/4 allowed to obtain oligo(azine)s with lower T-g values. PAZ-4 showed a UV-A absorption with optical band-gap values of 2.91 and 2.65 eV from UV-vis (solution) and DRS (films), respectively. PL analysis showed a violet emission. PAZ-4 showed resistivity of 29.24 omega cm, similar to wide-band gap materials. Their contact angle measurements showed a critical surface tension of 42.29 dynes/cm, revealing its hydrophobicity. AFM analysis indicated that the PAZ-4 films had homogeneous surfaces. Young's modulus close to 4.46 GPa was established by microindentation for the PAZ-4 thin-films.
更多
查看译文
关键词
optical and photovoltaic applications, optical properties, polycondensation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要