Molecular Characterization of the Response to Conventional Chemotherapeutics in Pro-B-ALL Cell Lines in Terms of Tumor Relapse

GENES(2022)

引用 0|浏览13
暂无评分
摘要
Little is known about optimally applying chemotherapeutic agents in a specific temporal sequence to rapidly reduce the tumor load and to improve therapeutic efficacy. The clinical optimization of drug efficacy while reducing side effects is still restricted due to an incomplete understanding of the mode of action and related tumor relapse mechanisms on the molecular level. The molecular characterization of transcriptomic drug signatures can help to identify the affected pathways, downstream regulated genes and regulatory interactions related to tumor relapse in response to drug application. We tried to outline the dynamic regulatory reprogramming leading to tumor relapse in relapsed MLL-rearranged pro-B-cell acute lymphoblastic leukemia (B-ALL) cells in response to two first-line treatments: dexamethasone (Dexa) and cytarabine (AraC). We performed an integrative molecular analysis of whole transcriptome profiles of each treatment, specifically considering public knowledge of miRNA regulation via a network-based approach to unravel key driver genes and miRNAs that may control the relapse mechanisms accompanying each treatment. Our results gave hints to the crucial regulatory roles of genes leading to Dexa-resistance and related miRNAs linked to chemosensitivity. These genes and miRNAs should be further investigated in preclinical models to obtain more hints about relapse processes.
更多
查看译文
关键词
drug response, tumor relapse, acute lymphoblastic leukemia, cytostatics, cytarabine, dexamethasone
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要