A Radiomics-Based Machine Learning Model for Prediction of Tumor Mutational Burden in Lower-Grade Gliomas

CANCERS(2022)

引用 10|浏览2
暂无评分
摘要
Simple Summary Lower-grade glioma (LGG) is a kind of center nervous system neoplasm that arises from the glial cells. Lower-grade glioma patients have a median survival time in the range of 1.5-8 years based on the tumor genotypes. In term of epidemiology, most of the lower-grade glioma patients are diagnosed at young adult of age, which led to an early age of death. For exact diagnosis and effective treatment, a pathological result from biopsy sample is required. However, it is long turnaround time. In this study, using pre-operative magnetic resonance images, we developed a non-invasive model to classify tumor mutational burden (TMB), a prognostic factor of treatment response in lower-grade glioma patients, with an accuracy of 0.7936. To our knowledge, our study represents the best model for classification of TMB in LGG patients at present. Glioma is a Center Nervous System (CNS) neoplasm that arises from the glial cells. In a new scheme category of the World Health Organization 2016, lower-grade gliomas (LGGs) are grade II and III gliomas. Following the discovery of suppression of negative immune regulation, immunotherapy is a promising effective treatment method for lower-grade glioma patients. However, the therapy is not effective for all types of LGGs, and tumor mutational burden (TMB) has been shown to be a potential biomarker for the susceptibility and prognosis of immunotherapy in lower-grade glioma patients. Hence, predicting TMB benefits brain cancer patients. In this study, we investigated the correlation between MRI (magnetic resonance imaging)-based radiomic features and TMB in LGG by applying machine learning methods. Six machine learning classifiers were examined on the features extracted from the genetic algorithm. Subsequently, a light gradient boosting machine (LightGBM) succeeded in selecting 11 radiomics signatures for TMB classification. Our LightGBM model resulted in high accuracy of 0.7936, and reached a balance between sensitivity and specificity, achieving 0.76 and 0.8107, respectively. To our knowledge, our study represents the best model for classification of TMB in LGG patients at present.
更多
查看译文
关键词
lower-grade glioma, tumor mutational burden, genetic algorithm, radiomics signature
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要