Fatty Acid Signaling Impacts Prostate Cancer Lineage Plasticity in an Autocrine and Paracrine Manner

CANCERS(2022)

引用 1|浏览17
暂无评分
摘要
Simple Summary A high-fat diet is implicated in prostate cancer progression in patients. Prostate-cancer-associated fibroblasts play an important role in promoting tumor progression and therapeutic resistance to androgen-receptor-signaling inhibitors, such as enzalutamide. We investigated the mechanism of saturated fatty acids' impact on prostate cancer reprogramming. Our work demonstrates that the tumor microenvironment defines the biology of prostate cancer progression induced by saturated fatty acids. This study also provides relevant data to potentially improve prognosis for patients with high fat intake through the inhibition of the identified signaling pathways. Prostate cancer (PCa) affects an estimated 250,000 men every year and causes 34,000 deaths annually. A high-fat diet and obesity are associated with PCa progression and mortality. This study's premise was the novel observation of crosstalk between PCa epithelia and cancer-associated fibroblasts (CAF) in response to palmitate-mediated lineage plasticity. We found that cholesterol activated canonical Hedgehog (Hh) signaling by increasing cilium Gli activity in PCa cells, while palmitate activated Hh independent of Gli. Exogenous palmitate activated SOX2, a known mediator of lineage plasticity, in PCa cells cocultured with CAF. Stroma-derived Wnt5a was upregulated in CAF while cocultured with PCa cells and treated with palmitate. Wnt5a knockdown in CAF inhibited Hh and SOX2 expression in PCa cells from cocultures. These findings supported our proposed mechanism of a high-fat diet promoting Hh signaling-mediated transformation within the tumor microenvironment. SOX2 and Wnt5a expression were limited by the CD36 neutralizing antibody. Mice xenografted with PCa epithelia and CAF tumors were fed a high-fat diet, leading to elevated SOX2 expression and lineage plasticity reprogramming compared to mice fed an isocaloric rodent diet. CD36 inhibition with enzalutamide elevated apoptosis by TUNEL, but limited proliferation and SOX2 expression compared to enzalutamide alone. This study revealed a mechanism for a high-fat diet to affect prostate cancer progression. We found that saturated fat induced lineage plasticity reprogramming of PCa by interaction with CAF through Wnt5a and Hh signaling.
更多
查看译文
关键词
cholesterol,free fatty acid,Wnt,hedgehog,cancer associated fibroblast,prostate cancer,androgen
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要