Multivariate insights into enhanced biogas production in thermophilic dry anaerobic co-digestion of food waste with kitchen waste or garden waste: Process properties, microbial communities and metagenomic analyses.

Bioresource technology(2022)

引用 26|浏览11
暂无评分
摘要
Multisubstrate synergetic anaerobic co-digestion can effectively overcome low efficiency of food waste (FW) mono-digestion. This study investigated the effect of supplementing FW with kitchen waste (KW) or garden waste (GW) on thermophilic dry anaerobic co-digestion. FW-KW and FW-GW co-digestion enhanced biogas production by 24.69 % and 44.96 % at organic loading rate (OLR) of 3 g VS L-1 d-1, and increased OLR tolerance from 3 to 4 g VS L-1 d-1 through mitigating ammonia nitrogen inhibition and volatile fatty acids accumulation. Co-digestion enriched the dominant hydrolytic bacteria Defluviitoga, resulting in an acceleration of substrate hydrolysis. FW-KW co-digestion improved biogas production by increasing gene abundance related to key enzymes in methanogenesis pathways and promoting the conversion of intermediate products into methane. FW-GW co-digestion enhanced biogas production by enriching ABC transporters-associated genes, leading to efficient substrate utilization. This study provides a promising approach for FW treatment with multivariate insights into thermophilic dry anaerobic co-digestion.
更多
查看译文
关键词
Thermophilic dry anaerobic digestion,Co-digestion,Food waste,Biogas production,Metabolic pathways
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要