Visible LED photocatalysis combined with ultrafiltration driven by metal-free oxygen-doped graphitic carbon nitride for sulfamethazine degradation

Journal of Hazardous Materials(2022)

引用 16|浏览7
暂无评分
摘要
A novel visible light emitting diode (LED) photocatalysis combined ultrafiltration (UF) system driven by metal-free O-doped C3N4 was established for sulfamethazine (SMZ) removal in environmental remediation. Among different O-doping ratios, 8%O-C3N4 exhibited the optimal SMZ degradation efficiency (89.36%) and the flux of 8%O-C3N4/LED/UF system could reach up to 38.92 L/m2/h. Benefitting from the O-doping, the synergetic effect of the expansion of visible-light absorption, enhancement of electron redox capacity, and improvement of e--h+ separation efficiency could produce the intensified photoactivity. Superoxide radical (O2•-) and single oxygen (1O2) were proved to be the primary active species by EPR and quenching tests. Moreover, the influence of several parameters such as photocatalyst dosage, SMZ concentration, raw turbidity and humic acid concentration in 8%O-C3N4/LED/UF system on SMZ removal were systematically studied. Under simulated surface water matrix, 8%O-C3N4/LED/UF system could also remove 96.88% SMZ and stable membrane flux stabilized as high as 33.36 L/m2/h. This study makes a demonstration for applying highly-effective powdery photocatalysts in the actual wastewater treatment and designing future photocatalytic reactors.
更多
查看译文
关键词
LED photocatalysis,Graphitic carbon nitride,Oxygen doping,UF membrane
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要