A Graphene Acid - TiO 2 Nanohybrid as Multifunctional Heterogeneous Photocatalyst for the Synthesis of 1,3,4-Oxadiazoles.

ACS applied materials & interfaces(2022)

Cited 1|Views10
No score
Abstract
The immobilization of TiO nanoparticles on graphene acid (GA), a conductive graphene derivative densely functionalized with COOH groups, is presented. The interaction between the carboxyl groups of the surface and the titanium precursor leads to a controlled TiO heterogenization on the nanosheet according to microscopic and spectroscopic characterizations. Electronic communication shared among graphene and semiconductor nanoparticles shifts the hybrid material optical features toward less energetic radiation but maintaining the conductivity. Therefore, GA-TiO is employed as heterogeneous photocatalyst for the synthesis of 2,5-disubstituted 1,3,4-oxadiazoles using ketoacids and hydrazides as substrates. The material presented enhanced photoactivity compared to bare TiO, being able to yield a large structural variety of oxadiazoles in reaction times as fast as 1 h with full recyclability and stability. The carbocatalytic character of GA is the responsible for the substrates condensation and the GA-TiO light interaction ability is able to photocatalyze the cyclization to the final 1,3,4-oxadiazoles, demonstrating the optimal performance of this multifunctional photocatalytic material.
More
Translated text
Key words
TiO2,electronic communication,graphene acid,oxadiazoles,photocatalysis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined