Deadlock Prediction via Generalized Dependency

ISSTA 2022: Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis(2022)

引用 4|浏览28
暂无评分
摘要
Deadlocks are notorious bugs in multithreaded programs, causing serious reliability issues. However, they are difficult to be fully expunged before deployment, as their appearances typically depend on specific inputs and thread schedules, which require the assistance of dynamic tools. However, existing deadlock detection tools mainly focus on locks, but cannot detect deadlocks related to condition variables. This paper presents a novel approach to fill this gap. It extends the classic lock dependency to generalized dependency by abstracting the signal for the condition variable as a special resource so that communication deadlocks can be modeled as hold-and-wait cycles as well. It further designs multiple practical mechanisms to record and analyze generalized dependencies. In the end, this paper presents the implementation of the tool, called UnHang. Experimental results on real applications show that UnHang is able to find all known deadlocks and uncover two new deadlocks. Overall, UnHang only imposes around 3% performance overhead and 8% memory overhead, making it a practical tool for the deployment environment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要