谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Exploiting the sp 2 character of bicyclo[1.1.1]pentyl radicals in the transition-metal-free multi-component difunctionalization of [1.1.1]propellane

NATURE CHEMISTRY(2022)

引用 41|浏览4
暂无评分
摘要
Strained bicyclic substructures are increasingly relevant in medicinal chemistry discovery research because of their role as bioisosteres. Over the last decade, the successful use of bicyclo[1.1.1]pentane (BCP) as a para -disubstituted benzene replacement has made it a highly valuable pharmacophore. However, various challenges, including limited and lengthy access to useful BCP building blocks, are hampering early discovery research. Here we report a single-step transition-metal-free multi-component approach to synthetically versatile BCP boronates. Radicals derived from commonly available carboxylic acids and organohalides perform additions onto [1.1.1]propellane to afford BCP radicals, which then engage in polarity-matched borylation. A wide array of alkyl-, aryl- and alkenyl-functionalized BCP boronates were easily prepared. Late-stage functionalization performed on natural products and approved drugs proceeded with good efficiency to generate the corresponding BCP conjugates. Various photoredox transformations forging C–C and C–N bonds were demonstrated by taking advantage of BCP trifluoroborate salts derived from the BCP boronates.
更多
查看译文
关键词
Synthetic chemistry methodology,Photocatalysis,Chemistry/Food Science,general,Analytical Chemistry,Organic Chemistry,Physical Chemistry,Inorganic Chemistry,Biochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要