PKCβ Inhibition Promotes TXNIP Degradation to Ameliorate Pancreatic β-Cell Dysfunction.

Pharmacology(2022)

Cited 2|Views2
No score
Abstract
INTRODUCTION:Pancreatic β-cell dysfunction is largely regulated by TXNIP accumulation, we have previously disclosed the role of PKA in TXNIP degradation during β-cell dysfunction. However, whether other kinases (PKCs) still regulate TXNIP is unclear, which is beneficial to alleviate β-cell dysfunction. METHODS:Thapsigargin (ER stress inducer) was used to induce β-cell dysfunction. PKC's inhibitors were screened by Western blotting indicated by TXNIP. Also RT-qPCR and Co-immunoprecipitation were applied for evaluating the β-cell improvement ability of PKC's inhibitors, and the insulin secretion ability was evaluated by glucose-stimulated insulin secretion assay. RESULTS:PKC's pan-inhibitor, Ro31-8220, decreased β-cell apoptosis and improved insulin secretion under ER stress or high glucose (HG) conditions. Further studies showed that Ro31-8220 reduced ER stress or HG-induced TXNIP levels. On the other side, PKCβ activation or overexpression could reverse the effect of Ro31-8220 on TXNIP. Also, PKCβ selective inhibitor, ruboxistaurin, induced TXNIP degradation as significantly as Ro31-8220 did. CONCLUSION:This study reveals the regulating mechanism of PKCβ inhibitor on TXNIP degradation to improve β-cell dysfunction. These data indicated PKCβ inhibitor is a promising agent for ameliorating β-cell dysfunction through TXNIP.
More
Translated text
Key words
PKCβ,Ro31-8220,TXNIP,Type 2 diabetes,β-Cell
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined