Direct Multimodal Nanoscale Visualization of Early Phosphorus-Based Antiwear Tribofilm Formation.

ACS applied materials & interfaces(2022)

Cited 2|Views13
No score
Abstract
Understanding the mechanism of antiwear (AW) tribofilm formation and how to tune surface chemistry to control functionality is essential for the development of the next generation of oil lubricants. In particular, understanding and optimizing early AW tribofilm formation can increase the energy efficiency of mechanical systems. However, the mechanism for how these films form is not well understood. The majority of prior work has focused on analyzing only end-of-test surfaces long after the film has formed. In this work, we develop an multimodal chemical imaging methodology to directly visualize the early formation of AW films on steel surfaces. We investigate an oil formulation containing a phosphorus-based additive commonly used to protect surfaces from wear and fatigue processes in machine elements, such as gears, bearings, and sliding contacts. Using nanoscale multimodal chemical imaging on combined platforms of atomic force microscopy (AFM) coupled directly with nano-infrared (nano-IR) spectroscopy, and further combined with time-of-flight secondary ion mass spectrometry (ToF-SIMS), we demonstrate a direct correlation between changes in friction and local surface chemistry. In these experiments, the AFM probe acts as a single asperity contact to generate the tribofilm as well as a tool to analyze it as it is forming. To verify our measurements, we compare these results to the ToF-SIMS of macroscale block-on-ring tribometer-formed samples. The understanding gained here on how AW films form and how film properties can be modified by tuning the chemistry of the additives will facilitate developing transmission fluids to meet increasing demands for vehicle performance and efficiency.
More
Translated text
Key words
additives,antiwear,atomic force microscopy,calcium,nano-infrared spectroscopy,phosphorus,time-of-flight secondary-ion mass spectrometry,tribofilm
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined