Interpretation of Shakeup Mechanisms in Copper L-Shell Photoelectron Spectra

M Mosaferi, P Selles, T Miteva,A Ferté,S Carniato

JOURNAL OF PHYSICAL CHEMISTRY A(2022)

引用 0|浏览9
暂无评分
摘要
We report on an original full ab initio quantum molecular approach designed to simulate Cu 2p X-ray photoelectron spectra. The description includes electronic relaxation/correlation and spin-orbit coupling effects and is implemented within nonorthogonal sets of molecular orbitals for the initial and final states. The underlying mechanism structuring the Cu 2p photoelectron spectra is clarified thanks to a correlation diagram applied to the CuO4C6H6 paradigm. This diagram illustrates how the energy drop of the Cu 3d levels following the creation of the Cu 2p core hole switches the nature of the highest singly occupied molecular orbital (H-SOMO) from dominant metal to dominant ligand character. It also reveals how the repositioning of the Cu 3d levels induces the formation of new bonding and antibonding orbitals from which shakeup mechanisms toward the relaxed H-SOMO operate. The specific nature, ligand -> ligand and metal -> ligand, of these excitations building the satellite lines is exposed. Our approach finally applied to the real Cu(acac)(2) system clearly demonstrates how a definite interpretation of the XPS spectra can be obtained when a correct evaluation of binding energies, intensities, and relative widths of the spectral lines is achieved.
更多
查看译文
关键词
X-ray Photoelectron Spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要