Enhancing the Peroxygenase Activity of a Cofactor-Independent Peroxyzyme by Directed Evolution Enabling Gram-Scale Epoxide Synthesis

CHEMISTRY-A EUROPEAN JOURNAL(2022)

Cited 3|Views2
No score
Abstract
Peroxygenases selectively incorporate oxygen into organic molecules making use of the environmentally friendly oxidant H2O2 with water being the sole by-product. These biocatalysts can provide 'green' routes for the synthesis of enantioenriched epoxides, which are fundamental intermediates in the production of pharmaceuticals. The peroxyzyme 4-oxalocrotonate tautomerase (4-OT), catalysing the epoxidation of a variety of alpha,beta-unsaturated aldehydes with H2O2, is outstanding because of its independence from any cost-intensive cofactor. However, its low-level peroxygenase activity and the decrease in the enantiomeric excess of the corresponding alpha,beta-epoxy-aldehydes under preparative-scale conditions is limiting the potential of 4-OT. Herein we report the directed evolution of a tandem-fused 4-OT variant, which showed an similar to 150-fold enhanced peroxygenase activity compared to 4-OT wild type, enabling the synthesis of alpha,beta-epoxy-aldehydes in milligram- and gram-scale with high enantiopurity (up to 98 % ee) and excellent conversions. This engineered cofactor-independent peroxyzyme can provide new opportunities for the eco-friendly and practical synthesis of enantioenriched epoxides at large scale.
More
Translated text
Key words
cofactor-independent, directed evolution, epoxidation, peroxygenase, peroxyzyme
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined