Harnessing Multiplex crRNA in the CRISPR/Cas12a System Enables an Amplification-Free DNA Diagnostic Platform for ASFV Detection.

ANALYTICAL CHEMISTRY(2022)

引用 21|浏览4
暂无评分
摘要
CRISPR-associated (Cas) protein systems have been increasingly incorporated in nucleic-acid diagnosis. CRISPR/Cas12a can cleave single-stranded DNA (ssDNA) after being guided to the target double-stranded DNA (dsDNA) with crRNA, making it a specific tool for dsDNA detection. Assisted by nucleic acid preamplification, CRISPR/Cas12a enables dsDNA detection at the attomolar level. However, such mandatory preamplification in CRISPR/Cas12a also accompanies the extra step of transferring preamplification products into the CRISPR/Cas12a system, which is not only cumbersome and time-consuming but also induces the risk of cross-contamination. Herein, we demonstrate a multiplex-crRNA strategy to enhance the sensitivity of the CRISPR/Cas12a system without any preamplification. This multiplex-crRNA strategy harnesses multiple sequences of crRNA which target different regions of the same dsDNA substrate in the same CRISPR/Cas12a system. Therefore, detection signals are accumulated without amplification, which augments the conventional detection limit. For application demonstration, the B646L gene from the African swine fever virus (ASFV), which is a dsDNA virus, is exemplified. The detection limit of the multiplex-crRNA system can be improved to ∼1 picomolar (pM) without amplification, which is ∼64 times stronger than the conventional single-crRNA system. The multiplex-crRNA system presented in this study, with slight modifications, can be generalized to other biosensing settings where preamplification is not readily available.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要