MiR-4763-3p targeting RASD2 as a Potential Biomarker and Therapeutic Target for Schizophrenia

AGING AND DISEASE(2022)

引用 0|浏览9
暂无评分
摘要
Existing diagnostic methods are limited to observing appearance and demeanor, even though genetic factors play important roles in the pathology of schizophrenia. Indeed, no molecular-level test exists to assist diagnosis, which has limited treatment strategies. To address this serious shortcoming, we used a bioinformatics approach to identify 61 genes that are differentially expressed in schizophrenia patients compared with healthy controls. In particular, competing endogenous RNA network revealed the important role of the gene RASD2, which is regulated by miR-4763-3p. Indeed, analysis of blood samples confirmed that RASD2 is downregulated in schizophrenia patients. Moreover, positron emission tomography data collected for 44 human samples identified the prefrontal and temporal lobes as potential key brain regions in schizophrenia patients. Mechanistic studies indicated that miR-4763-3p inhibits RASD2 by base-pairing with the 3' untranslated region of RASD2 mRNA. Importantly, RASD2 has been shown to interact with beta-arrestin2, which contributes to the regulation of the DRD2-dependent CREB response element-binding protein pathway in the dopamine system. Finally, results obtained with a mouse model of schizophrenia revealed that inhibition of miR-4763-3p function alleviated anxiety symptoms and improved memory. The dopamine transporters in the striatal regions were significantly reduced in schizophrenia model mice as compared with wild-type mice, suggesting that inhibition of miR-4763-3p can lessen the symptoms of schizophrenia. Our findings demonstrate that miR-4763-3p may target RASD2 mRNA and thus may serve as a potential biomarker and therapeutic target for schizophrenia, providing a theoretical foundation for further studies of the molecular basis of this disease.
更多
查看译文
关键词
Schizophrenia, RASD2, miR-4763-3p, Biomarker
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要