Lpt, trr, and Hcf regulate histone mono- and dimethylation that are essential for Drosophila heart development

Developmental Biology(2022)

引用 3|浏览13
暂无评分
摘要
Mammalian KMT2C, KMT2D, and HCFC1 are expressed during heart development and have been associated with congenital heart disease, but their roles in heart development remain elusive. We found that the Drosophila Lpt and trr genes encode the N-terminal and C-terminal homologs, respectively, of mammalian KMT2C or KMT2D. Lpt and trr mutant embryos showed reduced cardiac progenitor cells. Silencing of Lpt, trr, or both simultaneously in the heart led to similar abnormal cardiac morphology, tissue fibrosis, and cardiac functional defects. Like KMT2D, Lpt and trr were found to modulate histone H3K4 mono- and dimethylation, but not trimethylation. Investigation of downstream genes regulated by mouse KMT2D in the heart showed that their fly homologs are similarly regulated by Lpt or trr in the fly heart, suggesting that Lpt and trr regulate an evolutionarily conserved transcriptional network for heart development. Moreover, we showed that cardiac silencing of Hcf, the fly homolog of mammalian HCFC1, leads to heart defects similar to those observed in Lpt and trr silencing, as well as reduced H3K4 monomethylation. Our findings suggest that Lpt and trr function together to execute the conserved function of mammalian KMT2C and KMT2D in histone H3 lysine K4 mono- and dimethylation required for heart development. Possibly aided by Hcf, which we show plays a related role in H3K4 methylation during fly heart development.
更多
查看译文
关键词
Heart development,Histone modification,Drosophila,Lpt,Trr,Hcf,KMT2D,KMT2C,HCFC1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要