Probable Domain Generalization via Quantile Risk Minimization

NeurIPS 2022(2022)

引用 33|浏览43
暂无评分
摘要
Domain generalization (DG) seeks predictors which perform well on unseen test distributions by leveraging data drawn from multiple related training distributions or domains. To achieve this, DG is commonly formulated as an average- or worst-case problem over the set of possible domains. However, predictors that perform well on average lack robustness while predictors that perform well in the worst case tend to be overly-conservative. To address this, we propose a new probabilistic framework for DG where the goal is to learn predictors that perform well with high probability. Our key idea is that distribution shifts seen during training should inform us of probable shifts at test time, which we realize by explicitly relating training and test domains as draws from the same underlying meta-distribution. To achieve probable DG, we propose a new optimization problem called Quantile Risk Minimization (QRM). By minimizing the $\alpha$-quantile of predictor's risk distribution over domains, QRM seeks predictors that perform well with probability $\alpha$. To solve QRM in practice, we propose the Empirical QRM (EQRM) algorithm, and prove: (i) a generalization bound for EQRM; and (ii) that EQRM recovers the causal predictor as $\alpha \to 1$. In our experiments, we introduce a more holistic quantile-focused evaluation protocol for DG, and demonstrate that EQRM outperforms state-of-the-art baselines on CMNIST and several datasets from WILDS and DomainBed.
更多
查看译文
关键词
domain generalization,out-of-distribution generalization,invariant prediction,causality,robust optimization,risk-aware optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要