Limits to two-spin-qubit gate fidelity from thermal and vacuum fluctuations

arxiv(2022)

引用 0|浏览4
暂无评分
摘要
High-fidelity quantum gate operations are essential for achieving scalable quantum circuits. In spin qubit quantum computing systems, metallic gates and antennas which are necessary for qubit operation, initialization, and readout, also cause detriments by enhancing fluctuations of electromagnetic fields. Therefore evanescent wave Johnson noise (EWJN) caused by thermal and vacuum fluctuations becomes an important unmitigated noise, which induces the decay of spin qubits and limits the quantum gate operation fidelity. Here, we first develop a quantum electrodynamics theory of EWJN. Then we propose a numerical technique based on volume integral equations to quantify EWJN strength in the vicinity of nanofabricated metallic gates with arbitrary geometry. We study the limits to two spin-qubit gate fidelity from EWJN-induced relaxation processes in two experimentally relevant quantum computing platforms: (a) silicon quantum dot system and (b) NV centers in diamond. Finally, we introduce the Lindbladian engineering method to optimize the control pulse sequence design and show its enhanced performance over Hamiltonian engineering in mitigating the influence of thermal and vacuum fluctuations. Our work leverages advances in computational electromagnetics, fluctuational electrodynamics and open quantum systems to suppress the effects of thermal and vacuum fluctuations and reach the limits of two-spin-qubit gate fidelity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要