Multiparameter laser performance characterization of liquid crystals for polarization control devices in the nanosecond regime

SCIENTIFIC REPORTS(2022)

引用 3|浏览5
暂无评分
摘要
Interactions of liquid crystals (LC’s) with polarized light have been studied widely and have spawned numerous device applications, including the fabrication of optical elements for high-power and large-aperture laser systems. Currently, little is known about both the effect of incident polarization state on laser-induced–damage threshold (LIDT) and laser-induced functional threshold (LIFT) behavior at sub-LIDT fluences under multipulse irradiation conditions. This work reports on the first study of the nanosecond-pulsed LIDT’s dependence on incident polarization for several optical devices employing oriented nematic and chiral-nematic LC’s oriented by surface alignment layers. Accelerated lifetime testing was also performed to characterize the ability of these devices to maintain their functional performance under multipulse irradiation as a function of the laser fluence at both 1053 nm and 351 nm. Results show that the LIDT varies as a function of input polarization by 30–80% within the same device, while the multipulse LIFT (which can differ from the nominal LIDT) depends on irradiation conditions such as laser fluence and wavelength.
更多
查看译文
关键词
Materials chemistry,Materials for optics,Optical materials and structures,Organic chemistry,Photochemistry,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要