Influence of Shell Thickness on Durability of Ru@Pt Core-Shell Catalysts for Reformate PEM Fuel Cells

ECS Meeting Abstracts(2022)

引用 0|浏览0
暂无评分
摘要
For the use of polymer electrolyte membrane fuel cells (PEMFCs) in heavy duty applications, on-site generation of hydrogen rich gas by reforming hydrocarbons or methanol are a suitable alternative to pure H2 due to higher availability and higher energy density of hydrocarbon fuels [1]. The so-called reformate contains in addition of H2 also CO, which is a catalyst poison. PtRu alloys are the most promising catalysts for PEM fuel cells operated with reformate due to their high CO-tolerance [2]. It is known that the less noble Ru is unstable in acidic PEMFC conditions and is lowering the durability of the membrane electrode assembly (MEA) by dissolution and crossing over through the membrane to the cathode [3]. Ru dissolution and crossover result in a decreased CO-tolerance on the anode and a lower activity of the cathode towards oxygen reduction due to Ru blocking the Pt surface of the cathode catalyst [4]. To prolong the lifetime and CO-tolerance of reformate PEMFCs, the stability of the anode catalysts must be improved. One approach is nano-structuring the catalysts by encapsulating the less noble Ru-core with a Pt-shell. In doing so, the corrosion resistant Pt-shell supposes to protect the Ru-core from dissolution and thus mitigates the Ru crossover phenomenon. In this work, the influence of the Pt-shell thickness on the stability and performance of the Ru@Pt catalysts is investigated. Two catalysts with varying Pt-shell thicknesses were synthesized on Vulcan XC72R carbon via a two-step polyol. The catalyst with the thinner Pt-shell is called Ru@1Pt and with the thicker shell Ru@2Pt. The as-synthesized catalysts were physically characterized by XRD, ICP-OES, TEM and EDS. A representative EDS map of Ru@1Pt is shown in fig. 1a. The physical characterization of the obtained catalysts unveils a Ru@Pt core-shell structure with crystalline hcp Ru and fcc Pt. To further investigate the catalysts electrochemically, MEAs were manufactured using Ru@Pt catalysts as anodes and commercial membranes and cathode catalysts. An accelerated stress test (AST) was developed to target Ru dissolution by potential cycling and was applied to investigate and compare the stability of the catalysts. The MEAs were electrochemically characterized by cyclic voltammetry, CO-stripping and U-I curves before, during and after the AST. Post-mortem cross-section STEM analysis of the stressed cells were performed to evaluate the elemental composition and morphology of the anode and cathode after the stress test. During the AST, CO-stripping on the Ru@1Pt anode showed a peak shift to higher potentials, indicating a decrease in CO-tolerance due to Ru loss. By contrast, on the Ru@2Pt anode, the peak shifted to lower potentials implying a stronger promoting influence of Ru. On the cathode side, CV measurements before and after the AST revealed a double layer increase and a decrease in the HUPD. This change implies the poisoning of Pt with Ru and were more pronounced for Ru@1Pt compared to Ru@2Pt. As seen by the CO-stripping and CV results, the Ru dissolution and crossover was more severe for Ru@1Pt than for Ru@2Pt. Hence, a higher fuel cell performance loss was observed for the cell with Ru@1Pt in H2, as can be seen in fig. 1b. In addition, further U-I curves were measured under varying reformate conditions to identify the influence of CO on the cell performance. Cross-section EDS maps of the stressed MEAs were used to evaluate the Ru dissolution and its distribution in the different layers of the MEA. A higher Ru:Pt ratio was found on the cathode for the cell with Ru@1Pt compared to a cell with Ru@2Pt, which further verifies a higher degree of Ru crossover for the catalyst with the thinner Pt-shell. The above findings could evidence that the shell thickness plays a significant role in the corrosion resistance of core-shell reformate anode fuel cell catalysts. References [1] B. Du, R. Pollard, J.F. Elter, M. Ramani, in: F.N. Büchi, M. Inaba, T.J. Schmidt (Eds.), Polymer Electrolyte Fuel Cell Durability, Springer New York, New York, NY, 2009, pp. 341–366. [2] O.A. Petrii, J Solid State Electrochem 12 (2008) 609–642. https://doi.org/10.1007/s10008-007-0500-4. [3] E. Antolini, J Solid State Electrochem 15 (2011) 455–472. https://doi.org/10.1007/s10008-010-1124-7. [4] L. Gancs, B.N. Hult, N. Hakim, S. Mukerjee, Electrochem. Solid-State Lett. 10 (2007) B150. https://doi.org/10.1149/1.2754382. Figure 1
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要