Magnetic nanoprecipitates and interfacial spin disorder in zero-field-annealed Ni 50 Mn 45 In 5 Heusler alloys as seen by magnetic small-angle neutron scattering.

Journal of applied crystallography(2022)

引用 5|浏览14
暂无评分
摘要
Shell ferromagnetism is a new functional property of certain off-stoichiometric Ni-Mn-In Heusler alloys, with a potential application in non-volatile magnetic memories and recording media. One key challenge in this field remains the determination of the structural and magnetic properties of the nanoprecipitates that are the result of an annealing-induced segregation process. Thanks to its unique mesoscopic length scale sensitivity, magnetic small-angle neutron scattering appears to be a powerful technique to disclose the microstructure of such annealing-induced nanoprecipitates. In this study, the microstructure of a zero-field-annealed off-stoichiometric NiMnIn Heusler alloy is investigated by unpolarized magnetic small-angle neutron scattering. The neutron data analysis reveals a significant spin-misalignment scattering, which is mainly related to the formation of annealing-induced ferromagnetic nanoprecipitates in an antiferromagnetic matrix. These particles represent a source of perturbation which, due to dipolar stray fields, gives rise to canted spin moments in the surroundings of the particle-matrix interface. The presence of anticorrelations in the computed magnetic correlation function reflects the spatial perturbation of the magnetization vector around the nanoprecipitates. The magnetic field dependence of the zero crossing and the minima of the magnetic correlation function are qualitatively explained using the law of approach to ferromagnetic saturation for inhomogeneous spin states. More specifically, at remanence, the nanoprecipitates act magnetically as one superdefect with a correlation length that lies outside the experimental range, whereas near saturation the magnetization distribution follows each individual nanoprecipitate. Analysis of the neutron data yields an estimated size of 30 nm for the spin-canted region and a value of about 75 nm for the magnetic core of the individual nanoprecipitates.
更多
查看译文
关键词
Heusler alloys,magnetic neutron scattering,magnetic structures,materials science,small-angle neutron scattering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要