Ionic Liquid Crystals As Solid Organic Electrolytes for Li-Ion Batteries: Experiments and Modeling

ECS Meeting Abstracts(2022)

引用 0|浏览2
暂无评分
摘要
The development of the new electrolytes is essential to increase the energy density of the Li-ion batteries (LIBs)1. Solid electrolytes have attracted the interest of researchers as a next-generation electrolyte for LIBs due to their superior physical and chemical stability, large working potential windows, high transference number, and intrinsic safety2 3. In this study, we have designed and synthesized novel organic electrolytes for LIBs with a naphthalene mesogenic moiety bearing a lithium sulfonate group connected to two flexible long-alkyl chains. Starting from the lithium 4-aminonaphthalene-1-sulphonate building block, alkyl-tails were successfully doubly grafted on the amine function with N, N-di-isopropylethylamine in N, N-di-methylformamide. Once the reaction was completed, a washing, purification and neutralization step was carried out to obtain the desired product. Those electrolytes have been synthesized with 95 % purity as suggested from the NMR and mass spectrum. The chains length were differ by the number of alkyl groups in the chains from 8, 12, and 16, namely lithium 4 - (dioctylamino) naphthalene – 1 – sulfonate (BS-Li-8), lithium 4 - (didodecylamino) naphthalene – 1 - sulfonate (BS-Li-12), and lithium 4 - (dihexadecylamino) naphthalene – 1 – sulfonate (BS-Li-16). We have employed molecular dynamics simulations and various experimental techniques for a comprehensive understanding of the bulk structure and transport mechanism of those electrolytes. Simulated static structural factor, radial distribution functions, and experimental small angle x-ray scattering spectrum suggest that degree of aggregation, ionic correlations, and structural properties of materials at the nanoscale of the electrolyte molecules varies with the length of the alkyl chains. The Li+ ion mobility calculated from experimental Electrochemical Impedance Spectra, using a symmetrical cell with blocking electrodes and molecular dynamics simulations reveal that BS-Li-12 is the most conductive (approximately 10-3 S / cm at 1400 C) owing to the weaker cation-anion correlation than others. It was observed that the conductivity of the Li+ ions is directly related to the coordination number between Li+ and anionic centers, since, in BS-Li-12, Li+ coordinates with two anionic centers while for others, it is three. During the conduction, Li+ move from one anionic site to another by changing their coordination number with anion. We successfully synthesized next-generation organic electrolytes with well-organized Li+ conduction channels. The comprehensive study of the influence of the nonpolar alkyl chain on the bulk structural arrangement and conductivity of such electrolytes will contribute significantly to the development of future LIBs electrolytes. References: (1) Armand, M.; Tarascon, J.-M. Building Better Batteries. Nature 2008, 451 (7179), 652–657. https://doi.org/10.1038/451652a. (2) Manthiram, A.; Yu, X.; Wang, S. Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nature Reviews Materials 2017, 2 (4), 16103. https://doi.org/10.1038/natrevmats.2016.103. (3) Quartarone, E.; Mustarelli, P. Electrolytes for Solid-State Lithium Rechargeable Batteries: Recent Advances and Perspectives. Chem. Soc. Rev. 2011, 40 (5), 2525–2540. https://doi.org/10.1039/C0CS00081G. Figure 1
更多
查看译文
关键词
solid organic electrolytes,ionic liquid,crystals,li-ion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要