Applying fluorescent dye assays to discriminate Escherichia coli chlorhexidine resistance phenotypes from porin and mlaA deletions and efflux pumps

SCIENTIFIC REPORTS(2022)

引用 3|浏览12
暂无评分
摘要
Bacterial resistance to the antiseptic chlorhexidine (CHX), is a growing problem, recently shown to be caused by deleterious mutations to the phospholipid transport system component ( mlaA ) as well as efflux pump overexpression. Comparisons of CHX resistance mechanisms, such as porin deletions ( ompCF ), and over-expressed efflux pumps ( acrB, qacE, aceI ), are lacking and may be distinguishable using antiseptic rapid fluorescent dye testing assays. Using E. coli K-12 CHX adapted isolates (CHXR1), gene deletion mutants, and over-expressed transformants the phenotypes of these CHX resistance genes were compared using antimicrobial susceptibility tests (AST), rapid fluorescent propidium iodide dye-based membrane integrity assays (RFDMIA), and scanning electron microscopy (SEM). AST findings showed CHXR1, Δ acrB , Δ ompCF , and transformants pCA24N- aceI and pCA24N- mlaA conferred greater (two to fourfold) MIC changes when compared to matched controls. Examination of these mutants/transformants using CHX RFDMIA showed that porin dual-deletions (Δ ompCF ) and mlaA alterations (Δ mlaA ; pCA24N- mlaA, CHXR1) were distinguishable from controls. Results for over-expressed (pMS119EH- aceI ) and deleted (Δ acrB ) efflux pump RFDMIA could not be distinguished with propidium iodide, only with ethidium bromide, suggesting propidium iodide is better suited for detecting porin and mlaA associated CHX resistance mechanisms. SEM of CHXR1 and unadapted E. coli cells exposed to increasing CHX concentrations revealed that CHX does not visibly damage cell envelope integrity at any tested concentration but did identify elongated CHXR1 cells. Δ mlaA confers similar levels of CHX resistance as efflux overexpression and porin deletions, however, only outer membrane-altering porin and mlaA deletions can be reliably distinguished using RFDMIA.
更多
查看译文
关键词
Bacteria,Bacteriology,Biophysical chemistry,Infectious-disease diagnostics,Microbiology techniques,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要