Insolation-paced sea level during the Early Pleistocene, Taiwan

user-61447a76e55422cecdaf7d19(2021)

引用 0|浏览7
暂无评分
摘要
<p>The Pleistocene was a phase of global cooling of the Earth through which glacial-interglacial cycles occurred, and the growth and decay of the ice-sheets resulted in quasi-cyclic sea-level fluctuations driven by orbital forcing. Despite that summer insolation is mostly controlled by precession, the records of the glacial cycles showcase a significant periodicity of ~41 kyrs during the Early Pleistocene forced by Earth&#8217;s obliquity (tilt) that varies the latitudinal distribution of insolation especially in high latitudes. The dominance of obliquity over precession in marine archives is commonly attributed to the in-phase effect of obliquity-related insolation versus the opposite-phased influence of precession, which may cancel out the summer insolation signal received by the southern and northern hemispheres.</p><p>Here, we present a clastic shallow marine record from the Cholan Formation (Early Pleistocene; Taiwan). Facies analysis indicates that quasi-cyclic deposition occurred in shoreface to offshore environments in the paleo-Taiwan Strait. The magnetobiostratigraphic framework indicates that the studied section occurs in the lower part of the Matuyama subchron (1.925 - 2.595 Ma) close to the lower limit of the Olduvai (1.925 Ma) normal polarity subchron. Comparison of the stratigraphy to a d<sup>18</sup>O isotope record of benthic foraminifera and orbital curves of precession and obliquity at the time of sediment accumulation reveals a good correlation between depositional cycles and the Northern Hemisphere summer insolation, demonstrating precession dominated sea-level fluctuations during the Early Pleistocene. These results underpin recent findings suggesting that d<sup>18</sup>O isotope records of benthic foraminifera have a more significant precession signal than previously described. This study also demonstrates that shallow-marine stratigraphic successions in high-accommodation and high-sedimentation basins can be outstanding climate archives, possibly even preserving sediment flux responding to half-precession cycles.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要