Effect of deformation on evolution of Al3(Er,Zr) precipitates in Al–Er–Zr-based alloy

Materials Characterization(2022)

引用 11|浏览6
暂无评分
摘要
The effect of cold-rolling and high-temperature aging on precipitation processes in an Al–Er–Zr alloy was investigated by microhardness and resistivity measurements, scanning electron microscopy, (scanning) transmission electron microscopy and X-ray diffraction. Many similarities with the Al–Sc–Zr system have been shown. Based on the obtained results, following decomposition sequence of supersaturated solid solution of the Al–Er–Zr-based alloy has been proposed: Er-rich clusters → Al3Er phase → layer rich in Zr (Al3(Er,Zr) phase). Cold-rolling enhances the precipitation of Al3Er particles and accelerates the process identified as formation of the Zr-rich shell around the Er-rich core of Al3(Er,Zr) precipitates. The effect of precipitation strengthening is negligible compared to the effect of work hardening as the supersaturation of Er in the Al matrix was probably considerably lowered by formation of Er-rich primary precipitates observed in the as-prepared state of the alloys studied. The core–shell structure of the Al3(Er,Zr) particles formed after 2 and 4 h of aging at 600 °C was confirmed by Z contrast imaging and X-ray energy dispersive spectroscopy. The coherency strain-field around the precipitates is retained even after 4 h of aging at 600 °C. The Er/Zr atomic ratio of the precipitates was estimated based on their lattice constant.
更多
查看译文
关键词
Al–Er–Zr alloy,Al3(Er,Zr),Core–shell,Precipitation hardening,TEM,Resistivity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要