Current knowledge and implementations of Bemisia tabaci genomic technologies for sustainable control

Journal of Pest Science(2022)

Cited 4|Views9
No score
Abstract
Bemisia tabaci species complex (whitefly) is one of the most dangerous pests that destroy many important crops worldwide. It causes damage to the host plant by feeding on phloem sap as well as transmitting a wide range of devastating plant viruses (especially begomoviruses) that cause severe epidemics on crops. To fend off the menace, modern genomic-based strategies have been adapted to minimize the crop losses due to this destructive pest. Genetic engineering techniques, e.g., transgenics and RNA interference (RNAi) have shown promising results in controlling B. tabaci in plants; however, these techniques often face challenges due to the concerns about GMOs in food crops. With the enhanced knowledge about B. tabaci genomics, new technologies, e.g., manipulation of microbiota or CRISPR-based genome editing have shown promising results in several insect pests and could have an instrumental role in controlling agricultural pests including whitefly. Genome editing is an eco-friendly approach that can be employed to suppress or even destroy the target species. In this review, we have discussed B. tabaci as a pest and advancement in control strategies of B. tabaci . Various potential targets for genome editing have also been discussed that could be used in gene-editing technologies for the efficient management of B. tabaci and the viruses it transmits. Finally, we also outlined the future perspective and effective use of genome editing technology in developing CRISPR-based gene drive for whitefly population modification, suppression, and eradication.
More
Translated text
Key words
Whitefly, RNA interference (RNAi), Microbiome manipulation, CRISPR/Cas, Gene drive
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined