An Adaptive Hybrid Control Architecture for an Active Transfemoral Prosthesis

IEEE ACCESS(2022)

引用 1|浏览7
暂无评分
摘要
The daily usage of a prosthesis for people with an amputation consists of phases of intermittent and continuous walking patterns. Based on this observation, this paper introduces a novel hybrid architecture to control a transfemoral prosthesis, where separate algorithms are used depending on these two different types of movement. For intermittent walking, an interpolation-based algorithm generates control signals for the ankle and knee joints, whereas, for continuous walking, the control signals are generated utilizing an adaptive frequency oscillator. A switching strategy that allows for smooth transitioning from one controller to another is also presented in the design of the architecture. The individual algorithms for the generation of the joints angles' references, along with the switching strategy were experimentally validated on a pilot test with a healthy subject wearing an able-bodied adapter and a designed transfemoral prosthesis. The results demonstrate the capability of the individual algorithms to generate the required control signals while undergoing smooth transitions when required. Through the use of a combination of interpolation and adaptive frequency oscillator-based methods, the controller also demonstrates its response adaptation capability to various walking speeds.
更多
查看译文
关键词
Prosthetics, Legged locomotion, Knee, Computer architecture, Oscillators, Trajectory, Torque, Prosthetics, rehabilitation robotics, control design
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要