CdSe Quantum Dot-Based Nanocomposites for Ultralow-Power Memristors

ACS APPLIED NANO MATERIALS(2022)

Cited 10|Views5
No score
Abstract
The explosion in digital communication with the huge amount of data and the internet of things (IoT) led to the increasing demand for data storage technology with faster operation speed, high-density stacking, nonvolatility, and low power consumption for saving energy. Metal chalcogenide-based quantum dots (QDs) show excellent nonvolatile resistive memory behavior owing to their tunable electronic states and control in trap states by passivating the surface with different ligands. Here, we synthesized high-quality colloidal monodispersed CdSe QDs by the hot injection method. The CdSe QDs were blended with an organic polymer, poly(4-vinylpyridine) (PVP), to fabricate an Al\CdSe-PVP\Al device. Our device shows excellent bipolar nonvolatile resistive random access memory (RRAM) switching behavior with a high current ON/OFF ratio (I-ON/OFF) of 6.1 x 10(4), and it consumes ultralow power. The charge trapping and detrapping in the potential well formed by the CdSe QD and PVP combination result in resistive switching. This CdSe-PVP-based resistive random access memory (RRAM) device with a high I-ON/OFF, ultrafast switching speed, high endurance, low operating voltage, and long retention period can be used as a high-performance and ultralow-power memristive device.
More
Translated text
Key words
nonvolatile, metal chalcogenides, quantum dots, memory switching, memristor
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined