Frequency-Based Enhancement Network for Efficient Super-Resolution

IEEE ACCESS(2022)

引用 6|浏览26
暂无评分
摘要
Recently, deep convolutional neural networks (CNNs) have provided outstanding performance in single image super-resolution (SISR). Despite their remarkable performance, the lack of high-frequency information in the recovered images remains a core problem. Moreover, as the networks increase in depth and width, deep CNN-based SR methods are faced with the challenge of computational complexity in practice. A promising and under-explored solution is to adapt the amount of compute based on the different frequency bands of the input. To this end, we present a novel Frequency-based Enhancement Block (FEB) which explicitly enhances the information of high frequencies while forwarding low-frequencies to the output. In particular, this block efficiently decomposes features into low- and high-frequency and assigns more computation to high-frequency ones. Thus, it can help the network generate more discriminative representations by explicitly recovering finer details. Our FEB design is simple and generic and can be used as a direct replacement of commonly used SR blocks with no need to change network architectures. We experimentally show that when replacing SR blocks with FEB we consistently improve the reconstruction error, while reducing the number of parameters in the model. Moreover, we propose a lightweight SR model - Frequency-based Enhancement Network (FENet) - based on FEB that matches the performance of larger models. Extensive experiments demonstrate that our proposal performs favorably against the state-of-the-art SR algorithms in terms of visual quality, memory footprint, and inference time. The code is available at https://github.com/pbehjatii/FENet
更多
查看译文
关键词
Computer architecture, Superresolution, Computational modeling, Visualization, Network architecture, Computational efficiency, Buildings, Deep learning, frequency-based methods, lightweight architectures, single image super-resolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要