Ultra-narrow-band circular dichroism by surface lattice resonances in an asymmetric dimer-on-mirror metasurface

OPTICS EXPRESS(2022)

引用 17|浏览5
暂无评分
摘要
Narrow-linewidth circular dichroism (CD) spectroscopy is a promising candidate to push the limits of molecular handedness detection toward a monolayer or even to a single molecule level. Here, we designed a hybrid metasurface consisting of a periodic array of symmetry-breaking dielectric dimers on a gold substrate, which can generate strong CD of 0.44 with an extremely-narrow linewidth of 0.40 nm in the near-infrared. We found that two surface lattice resonance modes can be excited in the designed metasurface, which can be superimposed in the crossing spectral region, enabling a remarkable differential absorption with a high Q-factor for circular polarizations. The multipole decomposition of the resonance modes shows that the magnetic dipole component contributes most to the CD. Our simulation results also show that the CD response of the chiral structure can be engineered by modulating the structural parameters to reach the optimal CD performance. Ultra-narrow-linewidth CD response offered by the proposed metasurface with dissymmetry provides new possibilities towards design of the high-sensitive polarization detecting, chiral sensing and efficient chiral light emitting devices. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
关键词
circular dichroism,surface lattice resonances,ultra-narrow-band,dimer-on-mirror
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要