XPEEM and MFM Imaging of Ferroic Materials

ADVANCED ELECTRONIC MATERIALS(2022)

Cited 1|Views11
No score
Abstract
The authors describe and compare two complementary techniques that are habitually used to image ferromagnetic and ferroelectric materials with sub-micron spatial resolutions (typically 50 nm, at best 10 nm). The first technique is variable-temperature photoemission electron microscopy with magnetic/antiferromagnetic/polar contrast from circularly/linearly polarized incident X-rays (XPEEM). The second technique is magnetic force microscopy (MFM). Focusing mainly on the authors' own work, but not exclusively, published/unpublished XPEEM and MFM images of ferroic domains and complex magnetic textures (involving vortices and phase separation) are presented. Highlights include the use of two XPEEM images to create 2D vector maps of in-plane (IP) magnetization, and the use of imaging to detect electrically driven local reversals of magnetization. The brief and simple descriptions of XPEEM and MFM should be useful for beginners seeking to employ these techniques in order to understand and harness ferroic materials.
More
Translated text
Key words
magnetic imaging,magnetoelectrics,multiferroics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined