Hypersonic Boundary-Layer Instability Characteristics on Sharp Cone with Porous Coating

AIAA JOURNAL(2022)

引用 5|浏览7
暂无评分
摘要
No AccessTechnical NotesHypersonic Boundary-Layer Instability Characteristics on Sharp Cone with Porous CoatingYuteng Gui, Weizhang Wang, Rui Zhao, Jiaquan Zhao and Jie WuYuteng Gui https://orcid.org/0000-0001-8999-4483Huazhong University of Science and Technology, 430074 Wuhan, People’s Republic of China*Graduate Student, School of Aerospace Engineering.Search for more papers by this author, Weizhang WangBeijing Institute of Technology, 100081 Beijing, People’s Republic of China*Graduate Student, School of Aerospace Engineering.Search for more papers by this author, Rui ZhaoBeijing Institute of Technology, 100081 Beijing, People’s Republic of China†Associate Professor, School of Aerospace Engineering. Member AIAA.Search for more papers by this author, Jiaquan ZhaoHuazhong University of Science and Technology, 430074 Wuhan, People’s Republic of China‡Assistant Professor, School of Aerospace Engineering; (Co-Corresponding Author).Search for more papers by this author and Jie Wu https://orcid.org/0000-0001-7040-0817Huazhong University of Science and Technology, 430074 Wuhan, People’s Republic of China§Associate Professor, School of Aerospace Engineering; (Corresponding Author).Search for more papers by this authorPublished Online:16 May 2022https://doi.org/10.2514/1.J060930SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Fedorov A., “Transition and Stability of High-Speed Boundary Layers,” Annual Review of Fluid Mechanics, Vol. 43, No. 1, 2011, pp. 79–95. https://doi.org/10.1146/annurev-fluid-122109-160750 CrossrefGoogle Scholar[2] Reed H., Kimmel R., Schneider S., Arnal D., Reed H., Kimmel R., Schneider S. and Arnal D., “Drag Prediction and Transition in Hypersonic Flow,” 28th Fluid Dynamics Conference, AIAA Paper 1997-1818, 1997. https://doi.org/10.2514/6.1997-1818 LinkGoogle Scholar[3] Capriotti D., “Viscous Optimized Hypersonic Waveriders,” 25th AIAA Aerospace Sciences Meeting, AIAA Paper 1987-0272, 1987. https://doi.org/10.2514/6.1987-272 LinkGoogle Scholar[4] Mack L. M., “Boundary-Layer Linear Stability Theory,” AGARD Rept.709. 1984. Google Scholar[5] Federov A. V., Malmuth N. D., Rasheed A. and Hornung H. G., “Stabilization of Hypersonic Boundary Layers by Porous Coatings,” AIAA Journal, Vol. 39, Jan. 2001, pp. 605–610. https://doi.org/10.2514/3.14776 Google Scholar[6] Rasheed A., Hornung H. G., Fedorov A. V. and Malmuth N. D., “Experiments on Passive Hypervelocity Boundary-Layer Control Using an Ultrasonically Absorptive Surface,” AIAA Journal, Vol. 40, Jan. 2002, pp. 481–489. https://doi.org/10.2514/2.1671 AbstractGoogle Scholar[7] Maslov A., Shiplyuk A., Sidorenko A., Polivanov P. and Malmuth N., “Hypersonic Laminar Flow Control Using a Porous Coating of Random Microstructure,” AIAA Aerospace Sciences Meeting & Exhibit, AIAA Paper 2006-1112, 2015. https://doi.org/10.2514/6.2006-1112 Google Scholar[8] Lukashevich S. V., Maslov A. A., Shiplyuk A. N., Fedorov A. V. and Soudakov V. G., “Stabilization of High-Speed Boundary-Layer Using Porous Coatings of Various Thicknesses,” AIAA Journal, Vol. 50, June 2012. pp. 1897–1904. https://doi.org/10.2514/1.J051377 LinkGoogle Scholar[9] Wang X. and Zhong X., “Phase Angle of Porous Coating Admittance and its Effect on Boundary-Layer Stabilization,” 41st AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper 2011-3080, 2011. https://doi.org/10.2514/6.2011-3080 LinkGoogle Scholar[10] Wang X. and Zhong X., “The Stabilization of a Hypersonic Boundary Layer Using Local Sections of Porous Coating,” Physics of Fluids, Vol. 24, March 2012, Paper 034105. https://doi.org/10.1063/1.3694808 Google Scholar[11] Fedorov A. and Malmuth N., “Parametric Studies of Hypersonic Laminar Flow Control Using a Porous Coating of Regular Microstructure,” 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2008-588, 2008. https://doi.org/10.2514/6.2008-588 Google Scholar[12] Sandham N. and Luedeke H., “A Numerical Study of Mach 6 Boundary Layer Stabilization by Means of a Porous Surface,” 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2009-1288, 2009. https://doi.org/10.2514/6.2009-1288 LinkGoogle Scholar[13] Brès G. A., Inkman M., Colonius T. and Fedorov A. V., “Second-Mode Attenuation and Cancellation by Porous Coatings in a High-Speed Boundary Layer,” Journal of Fluid Mechanics, Vol. 726, May 2013, pp. 312–337. https://doi.org/10.1017/jfm.2013.206 CrossrefGoogle Scholar[14] Zhao R., Wen C. Y., Long T. H., Tian X. D., Zhou L. and Wu Y., “Spatial Direct Numerical Simulation of the Hypersonic Boundary-Layer Stabilization Using Porous Coatings,” AIAA Journal, Vol. 57, No. 11, 2019, pp. 5061–5065. https://doi.org/10.2514/1.J058467 LinkGoogle Scholar[15] Van Driest E. R., “Investigation of Laminar Boundary Layer in Compressible Fluids Using the Crocco Method,” NACA TN-2597, 1952. Google Scholar[16] Lees L., “Laminar Heat Transfer over Blunt-Nosed Bodies at Hypersonic Flight Speeds,” Journal of Jet Propulsion, Vol. 26, No. 4, 1956, pp. 259–269. https://doi.org/10.2514/8.6977 LinkGoogle Scholar[17] Mangler W., “Zusammenhang Zwischen Ebenen und Rotationssymmetrischen Grenzschichten in Kompressiblen Flüssigkeiten,” ZAMM–Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 28, No. 4, 1948, pp. 97–103. https://doi.org/10.1002/zamm.19480280401 CrossrefGoogle Scholar[18] Pruett C. D. and Streett C. L., “A Spectral Collocation Method for Compressible, Non–Similar Boundary Layers,” International Journal for Numerical Methods in Fluids; Vol. 13, No. 6, 1991, pp. 713–737. https://doi.org/10.1002/fld.1650130605 CrossrefGoogle Scholar[19] Zhao R., Zhang X. X. and Wen C. Y., “Theoretical Modeling of Porous Coatings with Simple Microstructures for Hypersonic Boundary-Layer Stabilization,” AIAA Journal, Vol. 58, Feb. 2020, pp. 981–986. https://doi.org/10.2514/1.J058403 LinkGoogle Scholar[20] Zhao J., Sima X., Huang R., Xiong Y., Yu T. and Wu J., “The Design of a Hypersonic Ludwieg Tube with Double-Bent Storage Tube,” Acta Aerodynamica Sinica. Vol. 39, 2021, pp 1–10. https://doi.org/10.7638/kqdlxxb-2021.0189 Google Scholar[21] Xiong Y., Yu T., Lin L., Zhao J. and Wu J., “Nonlinear Instability Characterization of Hypersonic Laminar Boundary Layer,” AIAA Journal, Vol. 58, Dec. 2020, pp. 5254–5263. https://doi.org/10.2514/1.J059263 LinkGoogle Scholar[22] Smeets G., “Laser Interferometer for High Sensitivity Measurements on Transient Phase Objects,” IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-8, March 1972, pp. 186–190. https://doi.org/10.1109/TAES.1972.309488 CrossrefGoogle Scholar[23] Parziale N. J., Shepherd J. E. and Hornung H. G., “Differential Interferometric Measurement of Instability in a Hypervelocity Boundary Layer,” AIAA Journal, Vol. 51, March 2013, pp. 750–754. https://doi.org/10.2514/1.J052013 LinkGoogle Scholar[24] Parziale N. J., Shepherd J. E. and Hornung H. G., “Observations of hypervelocity boundary-layer instability,” Journal of Fluid Mechanics, Vol. 781, Sept. 2015, pp. 87–112. https://doi.org/10.1017/jfm.2015.489 CrossrefGoogle Scholar[25] Munoz F., Wu J., Radespiel R., Semper M., Cummings R., Duan L. and Schilden T., “Freestream Disturbances Characterization in Ludwieg Tubes at Mach 6,” AIAA Scitech 2019 Forum, AIAA Paper 2019-0878, 2019. https://doi.org/10.2514/6.2019-0878 LinkGoogle Scholar[26] Muñoz F., Heitmann D. and Radespiel R., “Instability Modes in Boundary Layers of an Inclined Cone at Mach 6,” Journal of Spacecraft and Rockets, Vol. 51, March 2014, pp. 442–454. https://doi.org/10.2514/1.A32564 LinkGoogle Scholar[27] Muñoz F., Radespiel R. and Stemmer C., “Transition Measurement and Stability Analysis in Hypersonic Cone Flows, Niedersächsisches Forschungszentrum für Luftfahrt, Technische Universität Braunschweig, Braunschweig, Germany, 2020, p. 97. Google Scholar[28] Stetson K. and Kimmel R., “On Hypersonic Boundary-Layer Stability,” 30th Aerospace Sciences Meeting and Exhibit, AIAA Paper 1992-0737, 1992. https://doi.org/10.2514/6.1992-737 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byStabilization effect of acoustic metasurfaces on broadband disturbances in a Mach 6 boundary-layer flowPhysics of Fluids, Vol. 34, No. 12Impact of Wavy Wall Surface on Hypersonic Boundary-Layer Instability of Sharp Cone ModelJiaquan Zhao, Xuehao Sima, Youde Xiong, Guohua Tu, Renfu Li and Jie Wu 18 July 2022 | AIAA Journal, Vol. 60, No. 11 What's Popular Volume 60, Number 7July 2022 CrossmarkInformationCopyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsBoundary LayersComputational Fluid DynamicsFinite Element MethodFlow RegimesFluid DynamicsFluid Flow PropertiesFluid MechanicsMesh GenerationVortex DynamicsWind Tunnels KeywordsBoundary Layer TransitionPower Spectral DensityShock TunnelsFlow ConditionsPiezoelectric SensorsLudwieg TubeDirect Numerical SimulationScanning Electron MicroscopeThermal Protection SystemSurface RoughnessAcknowledgmentsDr. Mi Zhao is specially acknowledged for providing the scanning electron microscope image of porous coating. This work was supported by the National Natural Science Foundation of China (grant number 92052301).PDF Received23 May 2021Accepted27 March 2022Published online16 May 2022
更多
查看译文
关键词
sharp cone,instability,boundary-layer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要