Virtual full-duplex buffer-aided relay selection schemes for secure cooperative wireless networks

EURASIP Journal on Wireless Communications and Networking(2022)

引用 1|浏览10
暂无评分
摘要
This paper considers secure communication in buffer-aided cooperative wireless networks in the presence of one eavesdropper, which can intercept the data transmission from both the source and relay nodes. It is assumed that the relays employ the randomize-and-forward (RF) strategy such that the eavesdropper can only decode the signals received in the two hops independently. Two cooperative secure transmission schemes, i.e., hybrid imitating full-duplex max-max-ratio relay selection (HyIFD) scheme and threshold-based link selection (TBLS) scheme are proposed for adaptive- and fixed-rate transmissions aiming at improving the secrecy throughput and secrecy outage probability, respectively. For adaptive-rate transmissions (ART), the proposed scheme switches among three sub-strategies according to different conditions such as the number of relays and transmit power. Different relays are chosen for reception and transmission according to the ratio of the legitimate channels to the eavesdropper channels to imitate the full-duplex transmission mode. For fixed-rate transmissions (FRT), a hybrid HD/FD transmission mode is designed to increase the transmission probabilities of two hops under the transmission quality constraint. Two parameters are introduced and optimized to minimize the secrecy outage probability. A sub-optimal TBLS (SO-TBLS) scheme is also given. Theoretical analysis of the secrecy throughput and the secrecy outage probability are provided and the closed-form expressions are derived, and verified by numerical results. It is shown that the proposed schemes outperform benchmark schemes in terms of secrecy throughput and secrecy outage probability.
更多
查看译文
关键词
Buffer-aided relay, Physical layer security, Cooperative communication, Virtual full-duplex, Link selection, Secrecy throughput analysis, Secrecy outage probability analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要