Predation in Many Dimensions: Spatial Context Is Important for Meaningful Functional Response Experiments

FRONTIERS IN ECOLOGY AND EVOLUTION(2022)

引用 4|浏览1
暂无评分
摘要
For simplicity and to minimize variation, functional response experiments frequently use environments of simple physical structure and small size. Less attention is paid to similarity of the experimental environment to the natural environment where predation occurs. Assumptions about predator and prey use of space are often implied in the choice of experimental environment. We illustrate how these assumptions may affect conclusions with an experiment testing how arena size affects a functional response. Toxorhynchites rutilus preyed upon larval Culex restuans in containers differing in volume by 15x, but spanning a similar range of prey/liter. The most plausible Type II model included attack rates that were statistically indistinguishable, but in the larger volume, had handling time that was lower by > 30x compared to the smaller volume, suggesting a major change in predator behavior with container volume. When we altered our assumption that predation scales with prey/liter, assuming instead that aggregation causes predation to scale with prey/area of surface or bottom, the conclusions changed: neither attack rate nor handling time differed with container size. Thus, our assumption about how predator and prey used space altered the conclusions of the experiment. We then summarize recently published experiments showing that spatial context affects estimated functional responses. We suggest that functional response experiments would be improved by using larger experimental spaces that represent physical complexity of environments where predation occurs. Greater spatial extent and complexity are likely to cause aggregation of predation. Effects of more realistic spatial context are likely to yield more complete understanding of quantitative aspects of predation.
更多
查看译文
关键词
aggregation, area, edge effects, environmental complexity, predation, prey density, spatial dimensions, volume
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要