Baicalin-berberine complex nanocrystals orally promote the co-absorption of two components

DRUG DELIVERY AND TRANSLATIONAL RESEARCH(2022)

引用 4|浏览1
暂无评分
摘要
Baicalin (BA)-berberine (BBR) have been proposed as the couple in the prevention and treatment of numerous diseases due to their multiple functional attributes. However, with regard to certain factors involving unsatisfactory aqueous solubility and low bioavailability associated with its clinical application, there is need for continuous researches by scientist. In this study, after successfully preparing BA-BBR complex, BA-BBR complex nanocrystals were obtained through high-pressure homogenization and evaluated (in vitro and in vivo). The particle size, distribution, morphology, and crystalline properties for the optimal BA-BBR complex nanocrystals were characterized by the use of scanning electron microscope, dynamic light scattering, powder X-ray diffraction, and differential scanning calorimetry. The particle size and poly-dispersity index of BA-BBR complex nanocrystals were 318.40 ± 3.32 nm and 0.26 ± 0.03, respectively. In addition, evaluation of the in vitro dissolution extent indicated that BA and BBR in BA-BBR complex nanocrystals were 3.30- and 2.35-fold than BA-BBR complex. Subsequently, single-pass intestinal perfusion combined with microdialysis test and oral pharmacokinetics in SD rats was employed to evaluate the in vivo absorption improvement of BA-BBR complex nanocrystals. The pharmacokinetics results exhibited that the area under curve of BA and BBR in the BA-BBR complex nanocrystals group were 622.65 ± 456.95 h·ng/ml and 167.28 ± 78.87 h·ng/ml, respectively, which were separately 7.49- and 2.64-fold than the complex coarse suspension. In conclusion, the above results indicate that the developed and optimized BA-BBR complex nanocrystals could improve the dissolution rate and extent and oral bioavailability, as well as facilitate the co-absorption of the drug prescriptions BA and BBR. Graphical abstract
更多
查看译文
关键词
Baicalin-berberine complex, In vitro dissolution, Microdialysis, Nanocrystals, Single-pass intestinal perfusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要