Assessment of Daily of Reference Evapotranspiration Using CLDAS Product in Different Climate Regions of China

WATER(2022)

引用 4|浏览5
暂无评分
摘要
Reference Crop evapotranspiration (ET0) datasets based on reanalysis products can make up for the time discontinuity and the spatial insufficiency of surface meteorological platform data, which is of great significance for water resources planning and irrigation system formulation. However, a rigorous evaluation must be conducted to verify if reanalysis products have application values. This study first evaluated the ability of the second-generation China Meteorological Administration Land Data Assimilation System (CLDAS) dataset for officially estimating ET0 (the local meteorological station data is used as the reference dataset). The results suggest that the temperature data of CLDAS have high accuracy in all regions except the Qinghai Tibet Plateau (QTP) region. In contrast, the global solar radiation data accuracy is fair, and the relative humidity and wind speed data quality are poor. The overall accuracy of ET0 is acceptable other than QTP, but there are also less than 15% (103) of stations with significant errors. In terms of seasons, the error is largest in summer and smallest in winter. Additionally, there are inter-annual differences in the ET0 of this data set. Overall, the CLDAS dataset is expected to have good applicability in the Inner Mongolia Grassland area for estimating ET0, Northeast Taiwan, the Semi Northern Temperate zone, the Humid and Semi Humid warm Temperate zone, and the subtropical region. However, there are certain risks in other regions. In addition, of all seasons, summer and spring have the slightest bias, followed by autumn and winter. From 2017 to 2020, bias in 2019 and 2020 are the smallest, and the areas with large deviation are south of climate zone 3, the coastal area of climate zone 6, and the boundary area of climate zone 7.
更多
查看译文
关键词
raw reanalysis data, grid data, reference evapotranspiration, meteorological variables, Penman-Monteith equation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要