Efficient 5-axis CNC trochoidal flank milling of 3D cavities using custom-shaped cutting tools

COMPUTER-AIDED DESIGN(2022)

引用 5|浏览13
暂无评分
摘要
A novel method for trochoidal flank milling of 3D cavities bounded by free-form surfaces is proposed. Existing 3D trochoidal milling methods use on-market milling tools whose shape is typically cylindrical or conical, and is therefore not well-suited for meeting fine milling tolerances required for finishing of benchmark free-form surfaces like blades or blisks. In contrast, our variational framework incorporates the shape of the tool into the optimization cycle and looks not only for the trochoidal milling paths, but also for the shape of the tool itself. High precision quality is ensured by firstly designing flank milling paths for the side surfaces that delimit the motion space, in which the trochoidal milling paths are further computed. Additionally, the material removal rate is maximized with the cutter-workpiece engagement being constrained under a given tolerance. Our framework also supports multi-layer approach that is necessary to handle deep cavities. The ability and efficacy of the proposed method are demonstrated by several industrial benchmarks, showing that our approach meets fine machining tolerances using only a few trochoidal paths. (C) 2022 Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
5-axis CNC machining, Trochoidal milling, Custom-shaped tools, Roughing operations, Tangential movability, Free-form shape manufacturing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要