Methane oxidation by green oxidant to methanol over zeolite-based catalysts

CHINESE CHEMICAL LETTERS(2022)

引用 5|浏览10
暂无评分
摘要
To reduce greenhouse gas emission from oil and gas production, it is essential to better convert methane to useful chemicals (rather) than to flare it. Conversion of methane to liquid oxygenates (mainly methanol) has attracted extensive attention and countless efforts have been made; however, running this reaction in a green, efficient, and practical way has remained elusive. The novel catalyst and oxidants play a critical role in activating methane and converting it to oxygenates (methanol). In this review, the work of commonly used oxidants for methane partial oxidation have been summarized, in which, earth abundant oxidants, O-2 and H2O are promising. Moreover, H-2 or CO can activate O-2 to produce H2O2 that catalyzes methane partial oxidation more efficiently and selectively than O-2 or H2O. Therefore, the work of using reducing agent, such as CO and H-2 have been reviewed, focusing on rational catalyst design that features multifunction (H2O2 production and CH4 activation). The novel catalyst design has advanced this reaction towards practicality with green oxidants and H-2 using zeolites-based catalyst. Environmentally friendly zeolite preparation methods and novel two-dimensional (2D) zeolites that can reduce waste, improve synthesis and catalytical performance substantially are also reviewed in this work to provide insights for a more comprehensive approach to meet the environment protection needs. (C) 2021 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
更多
查看译文
关键词
Methane partial oxidation,Methane to methanol,Zeolite,Catalyst,Zeolite green synthesis,Solvent free,OSDA free,2D zeolites
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要