Chrome Extension
WeChat Mini Program
Use on ChatGLM

Scaling behaviour of braided active channels: a Taylor’s power law approach

The European Physical Journal Plus(2022)

Cited 1|Views8
No score
Abstract
At a channel (reach) scale, braided channels are fluvial, geomorphological, complex systems that are characterized by a shift of bars during flood events. In such events water flows are channeled in multiple and mobile channels across a gravel floodplain that remain in unmodified conditions. From a geometrical point of view, braided patterns of the active hydraulic channels are characterized by multicursal nature with structures that are spatially developed by either simple- and multi-scaling behavior. Since current studies do not take into account a general procedure concerning scale measurements, the latter behavior is still not well understood. The aim of our investigation is to analyze directly, through a general procedure, the scaling behavior of hydraulically active channels per transect and per reach analyzed. Our generalized stochastic approach is based on Taylor’s law, and the theory of exponential dispersion distributions. In particular, we make use of a power law, based on the variance and mean of the active channel fluctuations. In this way we demonstrate that the number of such fluctuations with respect to the unicursal behavior of the braided rivers, follows a jump-process of Poisson and compound Poisson–Gamma distributions. Furthermore, a correlation is also provided between the scaling fractal exponents obtained by Taylor’s law and the Hurst exponents.
More
Translated text
Key words
active channels
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined