Colloidal MoS2 quantum dots for high-performance low power resistive memory devices with excellent temperature stability

APPLIED PHYSICS LETTERS(2022)

Cited 8|Views2
No score
Abstract
Conventional memory technologies are facing enormous problems with downscaling, and are hence unable to fulfill the requirement of big data storage generated by a huge explosion of digital information. A resistive random access memory device (RRAM) is one of the most emerging technologies for next-generation computing data storage owing to its high-density stacking, ultrafast switching speed, high non-volatility, multilevel data storage, low power consumption, and simple device structure. In this work, colloidal MoS2 quantum dots (QDs) embedded in an insulating matrix of poly-(4vinylpyridine) (PVP) were used as an active layer to fabricate a RRAM device. The MoS2 QDs-PVP based RRAM device reveals an excellent nonvolatile resistive switching (RS) behavior with a maximum current on-off ratio (I-ON/I-OFF) of 10(5). High endurance, long retention time, and successive "write-read-erase-read" cycles indicate high-performance RRAM characteristics. The ultimate power consumption by this RRAM device is considerably low for energy saving. In addition, the MoS2 QDs-PVP based device shows RS behavior even at 130 degrees C. High I-ON/I-OFF, low operating power, high endurance, long retention time, and excellent stability with temperatures reveal that the MoS2 QDs-PVP based device can be a promising candidate for high-performance low power RRAM devices that can be operated at relatively higher temperatures. Published under an exclusive license by AIP Publishing.
More
Translated text
Key words
mos2 quantum dots,quantum dots,colloidal,high-performance
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined